This pipeline is also available from the web on the CBICA Image Processing Portal. Please see the experiment on the portal for details.
REQUIREMENTS:
- 4 structural MRI images (T1, T1CE, T2, FLAIR), preferably in NIfTI format
- For DICOM images, please pass the first image in each of the series as input, not the folder.
USAGE:
This CLI-only application takes 4 structural brain MRIs as input and performs the following steps [1-3]:
- Re-orientation to LPS/RAI
- Image registration to SRI-24 Atlas [4] which includes the following steps
- N4 Bias correction (This is a TEMPORARY STEP, and is not applied in the final co-registered output images. It is only use to facilitate optimal registration.)
- Rigid Registration of T1, T2, FLAIR to T1CE
- Rigid Registration of T1CE to SRI-24 atlas [4]
- Applying transformation to the reoriented images
- OPTIONAL: Deep-Learning based Skull-stripping [5]
- OPTIONAL: Deep-Learning based Tumor Segmentation [6]
Example command:
${CaPTk_InstallDir}/bin/BraTSPipeline.exe -t1 C:/test/t1.nii.gz -t1c C:/test/t1ce.nii.gz -t2 C:/test/t2.nii.gz -fl C:/test/flair.nii.gz -o C:/test/outputDir
NOTE: This applications takes ~30 minutes to finish on an 8-core Intel i7 with 16GB of RAM.
Explanation of output files:
Final co-registered images:
- T1_to_SRI.nii.gz : Co-registered T1 image
- T1CE_to_SRI.nii.gz: Co-registered T1CE image
- T2_to_SRI.nii.gz: Co-registered T2 image
- FL_to_SRI.nii.gz: Co-registered FLAIR image
(Optional) Deep Learning based masks:
- brainMask_SRI.nii.gz
- brainTumorMask_SRI.nii.gz
(Optional) Co-registered images, with brain mask applied:
- T1_to_SRI_brain.nii.gz
- T1CE_to_SRI_brain.nii.gz
- T2_to_SRI_brain.nii.gz
- FL_to_SRI_brain.nii.gz
(Optional) Intermediate files (similar for T1CE, T2, FLAIR):
- T1_raw.nii.gz : NifTi file converted from input DICOM, or copy of input NifTI file
- T1_rai.nii.gz : Image re-oriented to LPS/RAI
- T1_rai_n4.nii.gz : Image with N4 bias correction applied to T1_rai.nii.gz
- T1_to_T1CE.mat : transformation matrix of Rigid registration, T1 to T1CE
- T1CE_to_SRI.mat : transformation matrix of Rigid registration, T1CE to SRI
Reference:
- B. H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, J. Kirby, et al. "The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)", IEEE Transactions on Medical Imaging 34(10), 1993-2024 (2015) DOI:10.1109/TMI.2014.2377694
- S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, J.S. Kirby, et al., "Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features", Nature Scientific Data, 4:170117 (2017) DOI:10.1038/sdata.2017.117
- S. Bakas, M. Reyes, A. Jakab, S. Bauer, M. Rempfler, A. Crimi, et al., "Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge", arXiv preprint arXiv:1811.02629 (2018)
- T.Rohlfing, N.M.Zahr, E.V.Sullivan, A.Pfefferbaum, "The SRI24 multichannel atlas of normal adult human brain structure", Human Brain Mapping, 31(5):798-819, 2010, DOI:10.1002/hbm.20906
- S.Thakur, J.Doshi, S.Pati, S.Rathore, C.Sako, M.Bilello, S.M.Ha, G.Shukla, A.Flanders, A.Kotrotsou, M.Milchenko, S.Liem, G.S.Alexander, J.Lombardo, J.D.Palmer, P.LaMontagne, A.Nazeri, S.Talbar, U.Kulkarni, D.Marcus, R.Colen, C.Davatzikos, G.Erus, S.Bakas, "Brain Extraction on MRI Scans in Presence of Diffuse Glioma: Multi-institutional Performance Evaluation of Deep Learning Methods and Robust Modality-Agnostic Training, NeuroImage, Epub-ahead-of-print, 2020.
-# K.Kamnitsas, C.Ledig, V.F.J.Newcombe, J.P.Simpson, A.D.Kane, D.K.Menon, D.Rueckert, B.Glocker, "Efficient Multi-Scale 3D CNN with Fully Connected CRF for Accurate Brain Lesion Segmentation", Medical Image Analysis, 2016.