NiChart_DLMUSE source code
Submodules
DLMUSE pipeline
- NiChart_DLMUSE.dlmuse_pipeline.run_pipeline(in_data: str, out_dir: str, device: str, dlmuse_extra_args: str = '', dlicv_extra_args: str = '', sub_fldr: int = 1, progress_bar=None) None [source]
NiChart pipeline
- Parameters:
in_data (str) – the input directory
out_dir (str) – the output directory
device (str) – conda/mps for GPU acceleration otherwise cpu
dlmuse_extra_args (str) – extra arguments for DLMUSE package
dlicv_extra_args (str) – extra arguments for DLICV package
sub_fldr (int) – the number of subfolders(default = 1)
progress_bar (tqdm) – tqdm/stqdm progress bar for DLMUSE (default: None)
- Return type:
None
Calculate ROI Volume module
- NiChart_DLMUSE.CalcROIVol.append_derived_rois(df_in: DataFrame, derived_roi_map: Any) DataFrame [source]
Calculates a dataframe with the volumes of derived rois.
- Parameters:
df_in (pd.DataFrame) – the passed dataframe
derived_roi_map (Any) – derived roi map file
- Returns:
ROI dataframe
- Return type:
pd.DataFrame
- NiChart_DLMUSE.CalcROIVol.apply_create_roi_csv(df_img: DataFrame, in_dir: str, in_suff: str, dict_single_roi: str, dict_derived_roi: str, out_dir: str, out_suff: str) None [source]
Apply roi volume calc to all images
- Parameters:
df_img (pd.DataFrame) – the passed dataframe
in_dir (str) – the input directory
in_suff (str) – the input suffix
out_dir (str) – the output directory
out_suff (str) – the output suffix
- Return type:
None
- NiChart_DLMUSE.CalcROIVol.calc_roi_volumes(mrid: Any, in_img: Any, label_indices: ndarray) DataFrame [source]
Creates a dataframe with the volumes of rois
- Parameters:
mrid (Any) – the input mrid
in_img (niftii image) – the input image
label_indices (np.ndarray) – passed label indices
- Returns:
Dataframe with details of images
- Return type:
pd.DataFrame
- NiChart_DLMUSE.CalcROIVol.combine_roi_csv(df_img: DataFrame, in_dir: str, in_suff: str, out_dir: str, out_name: str) None [source]
Combine csv files
- Parameters:
df_img (pd.DataFrame) – passed dataframe
in_dir (str) – the input directory
in_suff (str) – the input suffix
out_dir (str) – the output directory
out_name (str) – the desired output filename
- Return type:
None
- NiChart_DLMUSE.CalcROIVol.create_roi_csv(mrid: Any, in_roi: Any, list_single_roi: Any, map_derived_roi: Any, out_csv: str) None [source]
Creates a csv file with the results of the roi calculations
- Parameters:
mrid (Any) – the input mrid
in_roi (Any) – the input ROI
map_derived_roi (Any) – derived roi map file
out_csv (str) – output csv filename
- Return type:
None
Mask Image
- NiChart_DLMUSE.MaskImage.apply_combine_masks(df_img: DataFrame, dlmuse_dir: str, dlmuse_suff: str, dlicv_dir: str, dlicv_suff: str, out_dir: str, out_suff: str) None [source]
Apply reorientation to all images
- Parameters:
df_img (pd.DataFrame) – the passed dataframe
dlmuse_dir (str) – the passed dlmuse directory
dlmuse_suff (str) – the passed dlmuse suffix
dlicv_dir (str) – the passed dlicv directory
dlicv_suff (str) – the passed dlicv suffix
out_dir (str) – the output directory
out_suff (str) – the output suffix
- Return type:
None
- NiChart_DLMUSE.MaskImage.apply_mask_img(df_img: DataFrame, in_dir: str, in_suff: str, mask_dir: str, mask_suff: str, out_dir: str, out_suff: str) None [source]
Apply reorientation to all images
- Parameters:
df_img (pd.DataFrame) – The passed dataframe
in_dir (str) – the input directory
in_suff (str) – the passed input suffix
mask_dir (str) – the passed mask directory
out_dir (str) – the passed output directory
out_suff (str) – the passed output suffix
- Return type:
None
- NiChart_DLMUSE.MaskImage.calc_bbox_with_padding(img: ndarray, perc_pad: int = 10) ndarray [source]
Finds bounding box for the foreground values in img, with a given padding percentage
- Parameters:
img (np.ndarray) – the passed image
perc_pad (int) – the given padding percentage
- Returns:
an array with the coordinates of the bounding box
- Return type:
np.ndarray
Relabel ROI
- NiChart_DLMUSE.RelabelROI.apply_relabel_rois(df_img: DataFrame, in_dir: str, in_suff: str, out_dir: str, out_suff: str, roi_map: Any, label_from: Any, label_to: Any) None [source]
Apply relabeling to all images
- Parameters:
df_img (pd.DataFrame) – the passed dataframe
in_dir (str) – the input directory
in_suff (str) – the input suffix
out_dir (str) – the output directory
out_suff (str) – the output suffix
roi_map (Any) – the roi map
label_from (Any) – input roi image
label_to (Any) – output roi image
- Return type:
None
- NiChart_DLMUSE.RelabelROI.relabel_rois(in_img: Any, roi_map: str, label_from: Any, label_to: Any, out_img: str) None [source]
Convert labels in input roi image to new labels based on the mapping The mapping file should contain numeric indices for the mapping between the input roi image (from) and output roi image (to)
- Parameters:
in_img (niftii image) – the passed image
roi_map (str) – the passed roi map
label_from (Any) – input roi image
label_to (Any) – output roi image
out_img (str) – the desired filename for the output image
- Return type:
None
Reorient Image
- NiChart_DLMUSE.ReorientImage.apply_reorient_img(df_img: DataFrame, ref_orient: Any, out_dir: str, out_suffix: str) None [source]
Apply reorientation to all images
- Parameters:
df_img (pd.DataFrame) – the passed dataframe
out_dir (str) – the output directory
out_suffix (str) – the output suffix
- Return type:
None
- NiChart_DLMUSE.ReorientImage.apply_reorient_to_init(df_img: DataFrame, in_dir: str, in_suff: str, out_dir: str, out_suff: str) None [source]
Apply reorientation to init img to all images
- Parameters:
df_img (pd.DataFrame) – the passed dataframe
in_dir (str) – the input directory
in_suff – the input suffix
in_suff – str
out_dir (str) – the output directory
out_suff (str) – the output suffix
- Return type:
None
Segment Image
- NiChart_DLMUSE.SegmentImage.run_dlicv(in_dir: str, in_suff: str, out_dir: str, out_suff: str, device: str, extra_args: str = '') None [source]
Run dlicv with the passed images
- Parameters:
in_dir (str) – the input directory
in_suff (str) – the input suffix
out_dir (str) – the output directory
out_suff (str) – the output suffix
device (str) – cuda/mps for GPU acceleration otherwise cpu
extra_args (str) – extra arguments for DLICV package
- Return type:
None
- NiChart_DLMUSE.SegmentImage.run_dlmuse(in_dir: str, in_suff: Any, out_dir: str, out_suff: Any, device: str, extra_args: str = '') None [source]
Run dlmuse with the passed images
- Parameters:
in_dir (str) – the input directory
in_suff (str) – the input suffix
out_dir (str) – the output directory
out_suff (str) – the output suffix
device (str) – cuda/mps for GPU acceleration otherwise cpu
extra_args (str) – extra arguments for DLMUSE package
- Return type:
None
util functions
- NiChart_DLMUSE.utils.collect_T1(in_dir: str, out_dir: str) None [source]
This function collects all the raw T1 images from the passed BIDS input dir and it creates a temporary folder that will act as a generic dataset with only T1 images
- Parameters:
in_dir (str) – the input directory
out_dir (str) – the output directory
- Return type:
None
- NiChart_DLMUSE.utils.dir_foldercount(in_dir: str) int [source]
Returns the number of subfolders that the input directory has
- Parameters:
in_dir (str) – the input directory
- Returns:
the number of folders in the input directory
- Return type:
int
- NiChart_DLMUSE.utils.dir_size(in_dir: str) int [source]
Returns the number of images the user passed
- Parameters:
in_dir (str) – the input directory
- Returns:
The size of the passsed directory
- Return type:
int
- NiChart_DLMUSE.utils.get_basename(in_file: str, suffix_to_remove: str, ext_to_remove: list = ['.nii', '.nii.gz']) str [source]
Get file basename - Extracts the base name from the input file - Removes a given suffix + file extension
- Parameters:
in_file (str) – the input file
suffix_to_remove (str) – passed suffix to be removed
ext_to_remove (list) – passed extensions to be removed.Default value: [‘.nii.gz’, ‘.nii’]
- Returns:
the string without the suffix + file extension
- Return type:
str
- NiChart_DLMUSE.utils.get_bids_prefix(filename: str, folder: bool = False) str [source]
Returns the prefix of a bids file :param filename: The passed file :type filename: str
- Parameters:
folder (bool) – True if the passed filename is a folder or False if it’s not
- Returns:
The prefix of the bids i/o
- Return type:
str
- NiChart_DLMUSE.utils.make_img_list(in_data: str) DataFrame [source]
Make a list of images
- Parameters:
in_data (str) – the input directory
- Returns:
a dataframe with the information about the passed data
- Return type:
pd.DataFrame
- NiChart_DLMUSE.utils.merge_bids_output_data(out_data: str) None [source]
Move all the images on the s5_relabeled subfolder to the subfolder of their prefix
- Parameters:
out_data (str) – the output_directory
- Return type:
None
- NiChart_DLMUSE.utils.merge_output_data(in_dir: str) None [source]
Takes all the results from the temp_working_fir and moves them into the output folder
- Parameters:
in_dir (str) – the input directory
- Return type:
None
- NiChart_DLMUSE.utils.remove_common_suffix(list_files: list) list [source]
Detect common suffix to all images in the list and remove it to return a new list This list can be used as unique ids for input images (assumption: images have the same common suffix - example: Subj1_T1_LPS.nii.gz -> Subj1)
- Parameters:
list_files (list) – a list with all the filenames
- Returns:
a list with the removed common suffix files
- Return type:
list
- NiChart_DLMUSE.utils.remove_subfolders(in_dir: str) None [source]
Removes all the split_* subolders from the input folder
- Parameters:
in_dir (str) – the input directory
- Return type:
None
- NiChart_DLMUSE.utils.split_data(in_dir: str, N: int) list [source]
Splits the input data directory into subfolders of size. N should be > 0 and the number of files in each subfolder should be > 0 as well.
- Parameters:
in_dir (str) – the input directory
N (int) – the number of generated split folders
- Returns:
a list of the subfolders name
- Return type:
list