Source code for spare_scores.cli

import argparse

import pkg_resources  # type: ignore

from .spare import spare_test, spare_train

from importlib.metadata import version
VERSION = version("spare_scores")


[docs] def main() -> None: prog = "spare_scores" description = "SPARE model training & scores calculation" usage = """ spare_scores v{VERSION}. SPARE model training & scores calculation required arguments: [ACTION] The action to be performed, either 'train' or 'test' [-a, --action] [INPUT] The dataset to be used for training / testing. Can be [-i, --input] a filepath string of a .csv file. optional arguments: [OUTPUT] The filename for the model (as a .pkl.gz) to be saved [-o, --output] at, if training. If testing, the filepath of the resulting SPARE score dataframe (as a .csv file) to be saved. If not given, nothing will be saved. [MODEL] The model to be used (only) for testing. Can be a [-m, --model, filepath string of a .pkl.gz file. Required for testing --model_file] [KEY_VAR] The key variable to be used for training. This could [-kv, be a string of a column name that can uniquely --key_var, identify a row of the dataset. --identifier] For example (if a row_ID doesn't exist), it could be: --key_var PTID If not given, the first column of the dataset is considered the primary key of the dataset. Required for training. [DATA_VARS] The list of predictors to be used for training. List. [-dv, If not given, training will assume that all (apart from --data_vars, the key variables) variables will be used as --predictors] predictors, with the ignore variables ignored. [IGNORE_VARS] The list of predictors to be ignored for training. Can [-iv, be a list, or empty. --ignore_vars, --ignore] [TARGET] The characteristic to be predicted in the course of the [-t, training. String of the name of the column. Required --target, for training. --to_predict] [POS_GROUP] Group to assign a positive SPARE score (only for -pg, classification). String. Required for training. --pos_group] [MODEL_TYPE] The type of model to be used for training. String. [-mt, 'SVM', 'MLP' 'MLPTorch'. Required for training. --model_type] [KERNEL] The kernel for SVM training. 'linear' or 'rbf' (only -k, linear is supported currently in regression). --kernel] [SPARE_VAR] The name of the column to be used for SPARE score. If [-sv, not given, the column will be named 'SPARE_score'. --spare_var] [VERBOSE] Verbosity. Int. [-v, 0: Warnings --verbose, 1: Info --verbosity] 2: Debug 3: Errors 4: Critical [LOGS] Where to save log file. If not given, logs will be [-l, printed out. --logs] [VERSION] Display the version of the package. [-V, --version] [HELP] Show this help message and exit. [-h, --help] """.format( VERSION=VERSION ) parser = argparse.ArgumentParser( prog=prog, usage=usage, description=description, add_help=False ) # ACTION argument help = "The action to be performed, either 'train' or 'test'" parser.add_argument( "-a", "--action", type=str, help=help, choices=["train", "test"], default=None, required=True, ) # INPUT argument help = ( "The dataset to be used for training / testing. Can be" + "a filepath string of a .csv file." ) parser.add_argument( "-i", "--input", type=str, help=help, default=None, required=True ) # OUTPUT argument help = ( "The filename for the model (as a .pkl.gz) to be saved " + "at, if training. If testing, the filepath of the " + "resulting SPARE score dataframe (as a .csv file) to be " + "saved. If not given, nothing will be saved." ) parser.add_argument( "-o", "--output", type=str, help=help, default=None, required=False ) # MODEL argument help = ( "The model to be used (only) for testing. Can be a " + "filepath string of a .pkl.gz file. Required for testing." ) parser.add_argument( "-m", "--model", "--model_file", type=str, help=help, default=None, required=False, ) # KEY_VAR argument help = ( "The key variable to be used for training. This could " + "be a string of a column name that can uniquely " + "identify a row of the dataset. " + "For example (if a row_ID doesn't exist), it could be: " + "--key_var PTID" + "If not given, the first column of the dataset is " + "considered the primary key of the dataset. Required for" + "training." ) parser.add_argument( "-kv", "--key_var", "--identifier", type=str, default="", required=False ) # DATA_VARS argument help = ( "The list of predictors to be used for training. List. " + "If not given, training will assume that all (apart from " + "the key variables) variables will be used as " + "predictors, with the ignore variables ignored." ) parser.add_argument( "-dv", "--data_vars", "--predictors", type=str, nargs="+", default=[], required=False, ) # IGNORE_VARS argument help = ( "The list of predictors to be ignored for training. Can be a list," + " or empty." ) parser.add_argument( "-iv", "--ignore_vars", "--ignore", type=str, nargs="+", default=[], required=False, ) # TARGET argument help = ( "The characteristic to be predicted in the course of the " + "training. String of the name of the column. Required " + "for training." ) parser.add_argument( "-t", "--target", "--to_predict", type=str, help=help, default=None, required=False, ) # POS_GROUP argument help = ( "Group to assign a positive SPARE score (only for classification)." + " String. Required for training." ) parser.add_argument( "-pg", "--pos_group", type=str, help=help, default=None, required=False ) # MODEL_TYPE argument help = ( "The type of model to be used for training. String. " + "'SVM' or 'MLP'. Required for training." ) parser.add_argument( "-mt", "--model_type", type=str, help=help, choices=["SVM", "MLP", "MLPTorch"], default="SVM", required=False, ) # KERNEL argument help = ( "The kernel for the training. 'linear' or 'rbf' (only linear is " + "supported currently in regression)." ) parser.add_argument( "-k", "--kernel", type=str, choices=["linear", "rbf"], help=help, default="linear", required=False, ) # SPARE_VAR argument help = ( "The name of the column to be used for SPARE score. If not given, " + "the column will be named 'SPARE_score'." ) parser.add_argument( "-sv", "--spare_var", type=str, help=help, default="SPARE_score", required=False ) # VERBOSE argument help = "Verbose" parser.add_argument( "-v", "--verbose", "--verbosity", type=int, help=help, default=1, required=False ) # LOGS argument help = "Where to save log file. If not given, logs will only be printed " + "out." parser.add_argument( "-l", "--logs", type=str, help=help, default=None, required=False ) # VERSION argument help = "Show the version and exit" parser.add_argument( "-V", "--version", action="version", version=prog + ": v{VERSION}.".format(VERSION=VERSION), help=help, ) # HELP argument help = "Show this message and exit" parser.add_argument("-h", "--help", action="store_true", help=help) arguments = parser.parse_args() if arguments.action == "train": if arguments.target is None: print(usage) print("The following argument is required: -t/--target" + "/--to_predict") return spare_train( arguments.input, arguments.target, arguments.model_type, arguments.pos_group, arguments.key_var, arguments.data_vars, arguments.ignore_vars, arguments.kernel, arguments.output, arguments.verbose, arguments.logs, ) return if arguments.action == "test": if arguments.model is None: print(usage) print("The following arguments are required: -m/--model/" + "--model_file") return spare_test( arguments.input, arguments.model, arguments.key_var, arguments.output, arguments.spare_var, arguments.verbose, arguments.logs, ) return return