##### Usage ##### In order to use ``spare_scores``, you have to use our CLI. The CLI can perform training and testing. For training we use 2 models, a SVM and a MLP. To perform **training**, you can just do: :: $ spare_score --action train \ --input spare_scores/data/example_data.csv \ --predictors H_MUSE_Volume_11 H_MUSE_Volume_23 H_MUSE_Volume_30 \ --ignore_vars Sex \ --to_predict Age \ --kernel linear \ --verbose 2 \ --output my_model.pkl.gz - With the ``--action`` parameter, you specify if you want to perform training or testing. - With the ``--input`` parameter, you specify the directory of the input data(has to be .csv). - The ``--predictors`` parameter is a list that represents the columns that will be used by the models for training. - With the ``--ignore_vars`` parameter, you specify(if needed) any columns than you want the models to ignore. - ``--to_predict`` represents the target column. - ``--kernel`` represents the kernel of regression/classification. Currently only ``linear`` is supported as an option for regression. - ``--verbose`` you can pass a value != 0 to enable verbosity on training/testing. - With the ``--output`` parameter, you specify the directory of the output. This is where the trained model will be saved. To perform **testing**, you can just do: :: $ spare_score -a test \ -i spare_scores/data/example_data.csv \ --model my_model.pkl.gz \ -o test_spare_data.csv \ -v 0 \ --logs test_logs.txt The only new parameter here is ``--logs`` that represents the filename of the logger.